NAUCZYCIELU, zapraszamy do krótkiego badania, wypełnienie ankiety nie zajmie więcej niż 30 sekund. Dziękujemy :)

jesteś tu: > matzoo.pl > klasa 4 > Ułamki zwykłe

Temat: SKRACANIE UŁAMKÓW ZWYKŁYCH

Wykonaj skracanie poniższych ułamków.

20 =
24


0

0



DODAJ KOMENTARZ


matmag.pl

WASZE KOMENTARZE DO TEGO ZADANIA:

  • Ola 2014-04-22 17:55:51

    Ta strona jest super fajna i super pomocna w nauce matematyki dzięki niej nauczyłam się tego w pięć minut bez pomocy
  • Bella T 2014-04-13 20:21:28

    nie kapuje tego ale ogólnie matma RZĄDZI !!!!!
  • leo 2014-03-28 21:14:03

    doszedłem do trzydziestu poprawnych i tylko 2 źle a jeden z powodu techniki
  • ZPX 2014-03-18 16:50:50

    fajne ale troszke trudne polecam :D
  • Justa 2013-04-23 14:46:22

    Ta stronka jest ekstra i wreszcie nauczyłam się ułamków a Wy????????
  • patrycja 2012-04-16 13:43:40

    nie rozumiem tego
  • czytaj wszystkie komentarze

Skróć ułamki i dowiedz się czy dobrze to zrobiłeś. Naucz się skracać ułamki razem z nami.
Uczeń, który opanował dział Ułamki zwykłe:
a) interpretuje ułamek w prostych sytuacjach życiowych,
b) skraca i rozszerza ułamki,
c) zamienia liczby mieszane na ułamki zwykłe i odwrotnie,
d) sprowadza ułamki do wspólnego mianownika,
e) zaznacza ułamki na osi liczbowej,
f ) porównuje ułamki,
g) dodaje i odejmuje ułamki o jednakowych i różnych
mianownikach,
h) mnoży i dzieli ułamki przez liczby całkowite oraz przez ułamki,
i) oblicza wskazany ułamek danej liczby,
j) znajduje liczbę na podstawie danego jej ułamka,
ułamki zadania. k) stosuje ułamki w sytuacjach praktycznych.
podstawy ułamków, zasady skracania ułamków, sprawdź się, zadania online. ułamki zwykłe, ułamki dla początkujących, ułamki dla dzieci, sprawdź się, przetestuj swoją wiedzę
Skracanie ułamków oznacza zapisywanie ich przy pomocy najmniejszych liczb jak to tylko możliwe.

Zobaczmy przykład.
Dziesięć dwudziestych.

Czy można zapisać ten ułamek używając mniejszych liczb? Sprawdźmy.
10 podzielmy przez 10
i 20 podzielmy przez 10

Otrzymujemy jedną drugą!

Właśnie skróciliśmy ułamek, ponieważ aby skrócić ułamek należy podzielić licznik i mianownik przez tę samą liczbę.

Zobaczmy inny przykład:
sześć dziewiątych.
Obie liczby: i szóstka i dziewiątka dzielą się przez trzy.
Dzielimy zatem licznik i mianownik przez trzy.

Otrzymujemy dwie trzecie.

Zapamiętaj. Wynikiem naszego skracania powinien być ułamek nieskracalny, to znaczy taki, którego nie można już skrócić.

Przećwiczmy to raz jeszcze.
Mamy ułamek cztery ósme.
Czwórka i ósemka dzielą się przez dwa.
Dzielimy licznik i mianownik przez dwa.

Otrzymujemy ułamek dwie czwarte.

Czy to już jest ułamek nieskracalny?
Nie! Możemy go jeszcze skrócić.
Jeszcze raz podzielmy nasz licznik i mianownik przez dwa.

To się równa jedna druga.

Świetnie! Teraz mamy już ułamek nieskracalny.
x

Stosujemy pliki cookies. Korzystanie z serwisu bez zmiany ustawień cookies oznacza, że będą one zamieszczane w Państwa urządzeniu końcowym. Szczegóły w Regulaminie serwisu.